
© 2011 IBM Corporation1 MICRO 2012

Transactional Memory
Architecture and Implementation for IBM System z

Christian Jacobi, Timothy Slegel, Dan Greiner
IBM Systems and Technology Group

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation2

Transactional Memory in System z

� Transactional Execution introduced in latest mainframe generation: zEC12
� First commercially available TM implementation in general-purpose CPU
� Available since September 2012

� zEC12 is descendent of original System 360 mainframe from 1964
� System z design is focused on

�performance
5.5GHz, out-of-order 6-way superscalar CISC processor

�scalability
101 customer CPUs, rich SMP-fabric, and large caches

�availability
99.999% availability, through stack-optimization for RAS

�virtualization
up to 60 partitions and thousands of virtual images

� targeting mission critical computing for commercial workload
– Transactional & analytical database workloads
– SAP, Java, Websphere, …

� IBM System z is IT backbone of many of the worlds largest corporations

L
3C

 0

L
3C

 1

GXM
C

U

Core0

Core1

Core2

Core3 Core5

Core4

L
3C

 0
L

3C
 0

L
3C

 0
L

3C
 0

L
3C

 0
L

3C
 0

L
3C

 0

L3 Data L3 Data

cop cop cop

cop cop cop

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation3

Transactional Execution
Requirements for introduction into commercial computer system

� Ease of use � simple semantics
• System z has “strong memory ordering” architecture, easing parallel software design
• Limit exposure of micro-architectural behavior at architecture level

� Stepwise introduction into existing software
• millions of lines of code won’t be rewritten in a year
• transactions need to co-exist with lock-based serialization

� Future compatibility
• Software cannot be adjusted for every generation of hardware

� Debugging & RAS
• parallel programming is hard – cannot make it harder with debugging and reproducibility

problems

� Introduction into existing CPU & Cache base design
• CPU & SMP-fabric evolutionary designs, revolutions are too expensive & risky

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation4

Transactions in System z

Transactions are regions of code starting with TBEGIN and ending with TEND.

�atomicity
instructions within a transaction execute all or none

� isolation
other CPUs or IO devices do not observe transaction’s memory updates, and transaction does
not observe memory updates by other CPUs or IO

• isolation is strong: transaction is isolated against other CPU’s non-transactional operations
• strong isolation is imperative for realistic introduction of TX into existing software

abort & rollback if isolation cannot be guaranteed

�opacity: isolated in non-committed state
transactions that abort are isolated up to the point of abort

• another key requirement for introduction into existing software
• alternative validate instruction to limit “zombie transactions” is too complex

� flattened nesting
the entire nest of transactions is rolled back on abort
maximum nesting depth is 16

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation5

Use Cases for Transactional Execution

Three main use cases considered during definition phase:

� Transactional Lock Elision
– replace lock acquire/release with transaction to ensure isolation of critical code section

Benefits:
– reduced cache miss latency for exclusive fetch of lock-word cache line
– better scalability in false contention cases

� General code optimization
� Lock-free data structures

TRANSACTION BEGIN
IF LOCK!=0 THEN ABORT
.. perform critical section ..
TRANSACTION END

TRANSACTION BEGIN
IF LOCK!=0 THEN ABORT
.. perform critical section ..
TRANSACTION END

@abort:
IF (count < threshold)
retry transaction

ELSE
OBTAIN LOCK
.. perform critical section..
RELEASE LOCK

@abort:
IF (count < threshold)
retry transaction

ELSE
OBTAIN LOCK
.. perform critical section..
RELEASE LOCK

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation6

Use Cases for Transactional Execution

Three main use cases considered during definition phase:

� Transactional Lock Elision

� General code optimization
– enable more aggressive compiler speculation, exploiting atomicity & isolation
– aggressively optimize dominant code path, moving rare code paths into the transaction

abort path

� Lock-free data structures

IF (cond && C!=0)
A=B/C
STORE A, mem

ELSE
..

ENDIF

IF (cond && C!=0)
A=B/C
STORE A, mem

ELSE
..

ENDIF

TRANSACTION BEGIN
A=B/C ;; aborts if C=0
STORE A,mem ;; speculatively store
IF(!cond)
TABORT

TRANSACTION END

TRANSACTION BEGIN
A=B/C ;; aborts if C=0
STORE A,mem ;; speculatively store
IF(!cond)
TABORT

TRANSACTION END

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation7

Use Cases for Transactional Execution

Three main use cases considered during definition phase:

� Transactional Lock Elision

� General code optimization

� Lock-free data structures
– potential for rapid exploitation through common data structure libraries
– transactions are easier / more powerful than Compare & Swap based algorithms
– priority work queues, hash tables, double-linked lists, …

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation8

Transaction Aborts

� Successful TBEGIN sets Condition Code to 0 and executes sequential stream
� Transaction-abort returns to instruction after TBEGIN, with CC /= 0

– CC=2 � likely transient condition, recommend retry (with threshold)
– CC=3 � likely persistent condition, recommend fallback path

Abort Abort Condition
Code Reason Code
2 External interruption 2
4 Program interruption (unfiltered) 2 or 3
5 Machine-check interruption 2
6 I/O interruption 2
7 Fetch overflow 2 or 3
8 Store overflow 2 or 3
9 Fetch conflict 2
10 Store conflict 2
11 Restricted instruction 3
12 Program-interruption condition 3
13 Nesting depth exceeded 3
14 Cache fetch-related 2 or 3
15 Cache store-related 2 or 3
16 Cache other 2 or 3
255 Miscellaneous condition 2 or 3
>256 TABORT instruction 2 or 3

Abort Abort Condition
Code Reason Code
2 External interruption 2
4 Program interruption (unfiltered) 2 or 3
5 Machine-check interruption 2
6 I/O interruption 2
7 Fetch overflow 2 or 3
8 Store overflow 2 or 3
9 Fetch conflict 2
10 Store conflict 2
11 Restricted instruction 3
12 Program-interruption condition 3
13 Nesting depth exceeded 3
14 Cache fetch-related 2 or 3
15 Cache store-related 2 or 3
16 Cache other 2 or 3
255 Miscellaneous condition 2 or 3
>256 TABORT instruction 2 or 3

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation9

Advanced TBEGIN features

Register save/restore
� TBEGIN General-Register-Save-Mask (GRSM) specifies which registers to save/restore
� Access and Floating Point Registers (AR/FPRs) are never saved/restored

– A/F flag to avoid unintended overwriting of registers inside transaction

Program Interruption Handling
� Exceptions inside transaction abort and trap into OS
� Aggressive compiler optimization can lead to speculative program interruptions

(unchecked pointers, unchecked data exceptions, etc)
� Program Interruption Filtering Control (PIFC):

– Program can specify which classes of interrupts not to report to OS

– Transaction still aborts, but without OS interrupt handler

Storage location of TDB (if B1!=0)

TBEGIN D1(B 1),I 2

D1‘E560’ B1 GRSM //// AFPIFC

Storage location of TDB (if B1!=0)

TBEGIN D1(B 1),I 2

D1‘E560’ B1 GRSM //// AFPIFC

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation10

Constrained Transactions

� Most transactions are expected to be short and touch few memory locations
– in particular lock-free data structures, and many Java synchronized blocks (lock elision)

� Having to code & test fallback path is significant burden on software design & verification

� Constrained Transactions
– always eventually complete
– start with TBEGINC

– no fallback path, CPU goes back to TBEGINC after abort

� List of constraints must be met, otherwise Constrained Exception detected
– maximum data footprint of 4 x 32 Bytes
– maximum of 32 assembler instructions, no backward branches (i.e. no loops)
– maximum code footprint of 256 bytes, non-overlapping with data footprint on 4K pages

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation11

Software RAS & Debugging Features

� Software RAS & debugging are essential for enterprise class hardware & software
� Transactions pose serious problems

– state (partially) rolled back at abort � new corner cases with aborts at different points
– limited visibility of why abort occurred (e.g. access exception)
– no ability to instruction-step through transaction

� TBEGIN can have Transaction Diagnostic Block parameter to store abort information
– detailed abort code & hardware-internal abort reason
– instruction & conflict address
– General Register content before abort

� Enhancements for break- & watch-points
– programmable to suppress events inside transactions, trigger at TEND

� Transaction Diagnostic Control
– force random aborts to increase code verification coverage

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation12

Transaction Cache Management

� L1-Data Cache Unit tracks transactional footprint
� new state bits for each 256 byte cache line

– tx-read bit set during execution
– tx-dirty bit set during L1 write back

� Gathering Store Cache buffers stores before L2
– 64 entries x 128 byte capacity
– CAM compare for gathering
– circular queue for write back

� Abort handling
– clear pending stores from STQ
– clear all tx stores from Gathering Store Cache
– clear dirty cache lines from L1

� L1/L2 track MESI-invalidations from L3 against TX footprint
– reject:“stiff-arm” other CPU to try finish transaction
– Abort transaction after reject thresholds

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation13

Implementation of Constrained Transactions

� Most constrained transactions complete on 1st or 2nd attempt without special handling
� Elaborate mechanisms implemented to guarantee eventual progress on repeated aborts

– artificial instruction streams, e.g. self-modifying code around transaction
• step-wise reduction of pipeline speculation in CPU
• disable branch prediction, out-of-order execution, pipelining

– unnaturally high contention or artificial instruction streams
• disable speculative fetching
• introduce random delays, tailored to specific machine circumstances
• interlock conflicting processors in LPAR or system-wide

� Escalation modes controlled by millicode, adjust with number of aborts & system specifics

� Lab bring-up found very interesting harmonics, with as few as 2 and as many as 100 CPUs

� Similar machine-specific delays are available for non-constrained transactions

� Perform Processor Assist (PPA-TX) instruction
– introduces random delay optimal for abort count and system specifics
– prevents adjustments of software to CPU generation or system size

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation14

Performance Measurements

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation15

Performance Measurements

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation16

Summary

� System z is first commercially available general-purpose platform for Transactional Memory
� Architected with software reliability, debug ability, and future compatibility in mind

� Implementation without disrupting existing CPU and SMP micro-architecture
� Micro-benchmarks show scalability potential versus fine and coarse grained locks

� Software team finding more and more exploitation scenarios:
– IBM XL C/C++ compiler support

• published comparison of pthread locks vs transactions on subset of STAMP

– z/OS Real Storage Manager lock avoidance
– IBM Java ConcurrentLinkedQueue using Constrained Transactions

• near-linear speed-up with number of CPUs

– future IBM Java using lock elision
– future IBM compilers to exploit general code reordering optimization using TX

� TX very promising tool to enable new wave of hardware & software co-innovation

© 2011 IBM Corporation17 MICRO 2012

Thank You
Christian Jacobi

cjacobi@us.ibm.com

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation18

zEC12 Design Overview

� 6 cores per chip CP chip
� 6 CP chips + 2SC chips per MCM
� Up to 4 MCMs

� Four level cache hierarchy
– private L1/L2 store through

96KB+1MB data, 64KB+1MB itext
– shared L3/L4 caches store-in

48MB+384MB
– Inclusive caches: L1 ⊆ L2 ⊆ L3 ⊆ L4

� variant of MESI protocol
– “Cross Interrogate” (XI) between

caches to invalidate cache lines
• reject XI if hit against pending store

– LRU-XI when higher-level cache evicts
cache line

PU 0PU 2

SC 0SC 1

PU 1

PU 5PU 3 PU 4

Fully connected 4 Book system:

PU Chip
6 Cores

PU Chip
6 Cores

PU Chip
6 Cores

PU Chip
6 Cores

48 MB eDRAM
Inclusive L3

L1

2 MB
L2

L1

2 MB
L2

+ + + +

+ + + +

48 MB eDRAM
Inclusive L3

L1

2 MB
L2

L1

2 MB
L2

+ + + +

+ + + +

48 MB eDRAM
Inclusive L3

L1

2 MB
L2

L1

2 MB
L2

+ + + +

+ + + +

48 MB eDRAM
Inclusive L3

L1

2 MB
L2

L1

2 MB
L2

+ + + +

+ + + +

392 MB eDRAM inclusive L4 on 2 SC chips

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation19

Pipeline

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation20

Key components of TX implementation

� Instruction Decode Unit

– detects & cracks TBEGIN/TEND
– counts nesting depth, tracks A/F/PFIC
– passes current tx-state into

Issue Queue per µ-ops

– detects restricted instructions
and requests abort

� Fixed Point Unit
– copies GPRs for restore on abort

– read by millicode during abort-
process to restore GPRs

� Global Completion Table
– tracks transactional state per “group” of µ-ops

– refreshes IDU on flush
– updates “architected” TX state at TBEGIN/TEND

completion

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation21

Other instructions

� ETND Extract Transaction Nesting Depth
� NTSTG Non-transactional store

Gathering Store Cache has byte-mask of which bytes are
transactional vs non-transactional. During abort, NTSTG’s stores survive.

� PPA Perform random delay based on system characteristics.

Christian Jacobi, MICRO 2012
© 2012 IBM Corporation22

Trademarks

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any
user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to
change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

* All other products may be trademarks or registered trademarks of their respective companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license there from.
Java and all Java-based trademarks are trademarks of Oracle Corporation in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
InfiniBand is a trademark and service mark of the InfiniBand Trade Association.
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

AIX*
BladeCenter*
CICS*
Cognos*
DataPower*
DB2*

FICON*
GDPS*
IMS
IBM*
IBM (logo)*

Parallel Sysplex*
POWER*
PR/SM
System z*
System z9*

System z10
WebSphere*
z/OS*
z/VM*
z/VSE*
zEnterprise*

